538 research outputs found

    Correlated long-range mixed-harmonic fluctuations measured in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector

    Get PDF
    For abstract see published article

    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s =13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the bb ¯ decay of the Standard Model Higgs boson produced through vector-boson fusion is presented. Three mutually exclusive channels are considered: two all-hadronic channels and a photon-associated channel. Results are reported from the analysis of up to 30.6 fb −1 of pp data at s √ =13 TeV collected with the ATLAS detector at the LHC. The measured signal strength relative to the Standard Model prediction from the combined analysis is 2.5 +1.4 −1.3 for inclusive Higgs boson production and 3.0 +1.7 −1.6 for vector-boson fusion production only

    Searches for exclusive Higgs and Z boson decays into J/ÏˆÎł,ψ(2S)Îł,and ΄(nS)Îł at √s=13 TeV with the ATLAS detector

    Get PDF
    Searches for the exclusive decays of the Higgs and Z bosons into a J/ψ,ψ(2S), or ΄(nS)(n=1,2,3) meson and a photon are performed with a pp collision data sample corresponding to an integrated luminosity of 36.1 fb −1 collected at √s =13 TeV with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above the expected backgrounds, and 95% confidence-level upper limits on the branching fractions of the Higgs boson decays to J/ÏˆÎł, ψ(2S)Îł,and ΄(nS)Îł of 3.5×10 −4, 2.0×10−3,and(4.9,5.9,5.7)×10 −4,respectively, are obtained assuming Standard Model production. The corresponding 95% confidence-level upper limits for the branching fractions of the Z boson decays are 2.3×10 −6, 4.5×10 −6 and (2.8,1.7,4.8)×10 −6, respectively

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed

    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of √s=13  TeV corresponding to an integrated luminosity of 36.1  fb−1. Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Zâ€Č bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Zâ€Č boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1–3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles

    Search for heavy charged long-lived particles in the ATLAS detector in 36.1 fb− 1 of proton-proton collision data at √s =13 TeV

    Get PDF
    A search for heavy charged long-lived particles is performed using a data sample of 36.1 fb−1 of proton-proton collisions at √s =13 TeV collected by the ATLAS experiment at the Large Hadron Collider. The search is based on observables related to ionization energy loss and time of flight, which are sensitive to the velocity of heavy charged particles traveling significantly slower than the speed of light. Multiple search strategies for a wide range of lifetimes, corresponding to path lengths of a few meters, are defined as model independently as possible, by referencing several representative physics cases that yield long-lived particles within supersymmetric models, such as gluinos/squarks (R-hadrons), charginos and staus. No significant deviations from the expected Standard Model background are observed. Upper limits at 95% confidence level are provided on the production cross sections of long-lived R-hadrons as well as directly pair produced staus and charginos. These results translate into lower limits on the masses of long-lived gluino, sbottom and stop R-hadrons, as well as staus and charginos of 2000, 1250, 1340, 430, and 1090 GeV, respectively

    Study of the hard double-parton scattering contribution to inclusive four-lepton production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    The inclusive production of four isolated charged leptons in pp collisions is analysed for the presence of hard double-parton scattering, using 20.2fb−1of data recorded in the ATLAS detector at the LHC at centre-of-mass energy √s=8TeV. In the four-lepton invariant-mass range of 80 <m4<1000GeV, an artificial neural network is used to enhance the separation between single-and double-parton scattering based on the kinematics of the four leptons in the final state. An upper limit on the fraction of events originating from double-parton scattering is determined at 95% confidence level to be fDPS=0.042, which results in an estimated lower limit on the effective cross section at 95% confidence level of 1.0mb

    Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for events with one top-quark and large missing transverse momentum in the final state. Data collected during 2015 and 2016 by the ATLAS experiment from 13 TeV proton–proton collisions at the LHC corresponding to an integrated luminosity of 36.1 fb−1 are used. Two channels are considered, depending on the leptonic or the hadronic decays of the W boson from the top quark. The obtained results are interpreted in the context of simplified models for dark-matter production and for the single production of a vector-like T quark. In the absence of significant deviations from the Standard Model background expectation, 95% confidence-level upper limits on the corresponding production cross-sections are obtained and these limits are translated into constraints on the parameter space of the models considered

    Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb−1 of LHC proton-proton collision data recorded at √s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/ψ → e + e − decays and radiative Z boson decays are also presented

    Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    A search for new charged massive gauge bosons, W_, is performed with the ATLAS detector at the LHC. Data were collected in proton–proton collisions at a center-of-mass energy of √s=13TeVand correspond to an integrated luminosity of 36.1fb−1. This analysis searches for W_bosons in the W_→t¯bdecay channel in final states with an electron or muon plus jets. The search covers resonance masses between 0.5 and 5.0TeVand considers right-handed W_bosons. No significant deviation from the Standard Model (SM) expectation is observed and upper limits are set on the W_→t¯bcross section times branching ratio and the W_boson effective couplings as a function of the W_boson mass. For right-handed W_bosons with coupling to the SM particles equal to the SM weak coupling constant, masses below 3.15TeVare excluded at the 95% confidence level. This search is also combined with a previously published ATLAS result for W_→t¯bin the fully hadronic final state. Using the combined searches, right-handed W_bosons with masses below 3.25TeVare excluded at the 95% confidence level
    • 

    corecore